Flexible error-reduction method for shape measurement by temporal phase unwrapping: phase averaging method.
نویسندگان
چکیده
Temporal phase unwrapping is an important method for shape measurement in structured light projection. Its measurement errors mainly come from both the camera noise and nonlinearity. Analysis found that least-squares fitting cannot completely eliminate nonlinear errors, though it can significantly reduce the random errors. To further reduce the measurement errors of current temporal phase unwrapping algorithms, in this paper, we proposed a phase averaging method (PAM) in which an additional fringe sequence at the highest fringe density is employed in the process of data processing and the phase offset of each set of the four frames is carefully chosen according to the period of the phase nonlinear errors, based on fast classical temporal phase unwrapping algorithms. This method can decrease both the random errors and the systematic errors with statistical averaging. In addition, the length of the additional fringe sequence can be changed flexibly according to the precision of the measurement. Theoretical analysis and simulation experiment results showed the validity of the proposed method.
منابع مشابه
A high precision 3D dynamic measurement prototype system based on color-coded fringe and phase shifting
Accurate dynamic measurement of the 3-D shape of moving objects is a rapidly expanding field, with applications in entertainment, design, and manufacturing. In this work, the two CCD/CMOS cameras are calibrated with a flexible and accurate camera calibration method. Then, a new approach based on color-coded fringe is proposed for high precision 3D dynamic measurement. The method is based on pha...
متن کاملInSAR Phase Unwrapping by Transforming Sparce Data into a Regular Space
Phase unwrapping is one of the most important parts of InSAR techniques. In order to estimate the grand surface displacements, interferomtric phases modulated between 0 to 2π must be unwrapped. Based on the use of either the conventional method or persistent scatterer (PS), phases will be spread both regularly and irregularly. The phases of PSs can be unwrapped by reducing phases into a regular...
متن کاملPixel-by-pixel absolute three-dimensional shape measurement with modified Fourier transform profilometry
The single-pattern Fourier transform profilometry (FTP) and double-pattern modified FTP methods have great value in high-speed three-dimensional shape measurement, yet it is difficult to retrieve absolute phase pixel by pixel. This paper presents a method that can recover absolute phase pixel by pixel for the modified FTP method. The proposed method uses two images with different frequencies, a...
متن کاملAbsolute three-dimensional shape measurement with a known object.
This paper presents a novel method for absolute three-dimensional (3D) shape measurement that does not require conventional temporal phase unwrapping. Our proposed method uses a known object (i.e., a ping-pong ball) to provide cues for absolute phase unwrapping. During the measurement, the ping-pong ball is positioned to be close to the nearest point from the scene to the camera. We first segme...
متن کاملEnhanced two-frequency phase-shifting method.
One of the major challenges of employing a two-frequency (or two-wavelength) phase-shifting algorithm for absolute three-dimensional shape measurement is its sensitivity to noise. Therefore, three- or more-frequency phase-shifting algorithms are often used in lieu of a two-frequency phase-shifting algorithm for applications where the noise is severe. This paper proposes a method to use geometri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 51 21 شماره
صفحات -
تاریخ انتشار 2012